INTRODUCTION

Rob Patrawala, M.D., is the co-director of the Electrophysiology Program at Sequoia Hospital in Redwood City, California. There are four electrophysiologists in this private practice group who collectively perform more than 1000 EP procedures annually. He graduated from UCLA Medical School and did his post-residency training at Stanford University Medical Center and UC Davis Medical Center, and completed his electrophysiology training at Stanford Hospital.

PHYSICIAN INTERVIEW

Q1: HOW DO YOU UTILIZE THE REFLEXION SPIRAL CATHETER IN YOUR PRACTICE?

The Reflexion Spiral is a very integral part of our practice. Once we access the left atrium through a transseptal procedure, we make a three dimensional (3D) geometry of the left atrium, and we use the Reflexion Spiral to make that 3D geometry. After ablation, we use the Reflexion Spiral to remap the four pulmonary vein antrums during atrial mapping to make sure that we have electrical block. We check in many instances for exit blocks by pacing (for diagnostic purposes) from the bi-poles of the Reflexion Spiral catheter.

Q2: WHAT HAS BEEN YOUR EXPERIENCE WITH THE FEEL AND HANDLING OF THE CATHETER?

The feel and handling of the Reflexion Spiral catheter are excellent. It holds up and responds in my hands very well. Some of our procedures can be quite lengthy — 2 to 3 hours and it seems to maintain its circular shape well. It is bi-directional 180 degrees each way and its loop is adjustable. We’ve been quite happy with it.

Q3: HOW DOES THE CATHETER PERFORM DURING YOUR LEFT ATRIAL PROCEDURES?

Once we’re in the left atrium, its maneuverability is excellent. It performs very well in mapping the ostia of the pulmonary veins. The catheter’s ability to deflect 180 degrees has been quite helpful in accessing the ostia of the right pulmonary vein.

Q4: WHAT WOULD YOU SAY ABOUT THE STABILITY OF THE CATHETER?

The stability of the catheter has been excellent. Throughout the procedure, it stays stable with its expandable loop seated against the ostia of the pulmonary veins during atrial mapping.
Q5: WHAT DOES THE SMALL TURNING RADIUS ENABLE YOU TO DO?

I think the advantage of the small turning radius is maneuverability in the small atrial anatomy. This enables me to easily access the ostia of the right inferior pulmonary vein during atrial mapping without additional torquing and twisting. As a result, I save time in a procedure.

Q6: WHAT DO YOU USE TO CREATE A GEOMETRY?

What we used to do and I think what is standard for many labs is to create the geometry with the 3D mapping system with the ablation catheter. With the maneuverability and the small turning radius of the Reflexion Spiral catheter coupled with the OneMap™ Tool on the EnSite Velocity™ System, you can create the geometry and get multiple mapping points very rapidly and thoroughly.

Q7: WHAT DOES A HIGHLY DETAILED GEOMETRY ENABLE YOU TO DO CLINICALLY IN THE LAB?

With a highly detailed geometry, you’re able to really use your geometry to guide the procedure. One of the advantages of such a geometry is to catalog your ablation sites, but it also allows you to really limit the amount of radiation exposure to the patient and physician by visualizing the location of the catheter on the EnSite Velocity System.

CONCLUSION

The Reflexion Spiral catheter provides bi-directional deflection and a small turning radius that gives physicians control in mapping the atrial regions of the heart. The maneuverability and stability of the catheter enables physicians to confidently create geometry, map, and confirm electrical block with clean signals.